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Figure: Ω := Universe possible outcomes.
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Figure: A := Event, set of possible outcomes. A ⊆ Ω.
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Figure: Outcomes not in A.
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So this looks a lot like set theory, and it is.

To know how likely is that an event in Ω occurs, we need to have a measure of A.
That’s why measure theory is so important in probability.

Call the function P : P(Ω) → R a measure. For P to be a probability three things
must hold:

1. P(Ω) = 1.
2. P(A ⊆ Ω) ≥ 0

3. If, for A,B ⊆ Ω, A ∩ B = ∅ then P(A ∪ B) = P(A) + P(B)

These three conditions are known as the Kolmogorov Axioms.
We will not cover measure theory here, just use it in a somehow intuitive way.
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D e fi n i t i o n

Let (Ω,P(Ω),P) be a measure space with P(Ω) = 1. Then (Ω,P(Ω),P) is called a
probability space with sample space Ω, event space P(Ω), and probability measure P .

C o n j e c t u r e

Let (Ω,P(Ω),P) be a probability space satisfying the Kolmogorov Axioms, then:
1. P(∅) = 0.
2. If A ⊆ B, then P(A) ≤ P(B).
3. P(A) ∈ [0, 1], ∀A ∈ P(Ω).
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From the example at the start of the class, let’s show that P(Ac) = 1− P(A).
1. A and Ac are disjoint.
2. P(A) + P(Ac) = P(A ∪ Ac).
3. But A ∪ Ac = Ω, so P(A) + P(Ac) = P(Ω)

4. But we know that P(Ω) = 1, so...
5. P(A) + P(Ac) = 1 ⇒ P(Ac) = 1− P(A)
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Figure: A ∪ B := Outcomes in A or B happening.
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What’s the probability of A ∪ B when A and B are not disjoint? What’s the problem
with P(A) + P(B)?

P(A ∩ B) is being counted twice!, so

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

What happens with the intersection?
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Figure: A ∩ B := Outcomes that belong in A and B.
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An interesting question, what’s the probability that an outcome in B is also an
outcome that could happen in A?

This is what “conditional probability” is all about. Given that we are looking only at
elements in B, our universe is B and not Ω, so the probability will be P(A ∩ B) divided
by the size of B, that is, P(B).

P(A|B) =
P(A ∩ B)

P(B)
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Figure: A ∩ B := Outcomes that belong in A and B.
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Figure: A|B, Outcomes that belong to A given that they are also in B.
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Note that as A ∩ B ⊆ B, then P(A ∩ B) ≤ P(B), and therefore P(A|B) ≤ 1.

It should be clear also that P(A|B) = P(B|A) if and only if P(A) = P(B).
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Note that if we know P(A|B) then we can obtain P(A ∩ B)

P(A|B) =
P(A ∩ B)

P(B)
⇔ P(A ∩ B) = P(B)P(A|B)

This is known as the product rule.
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Assume now that B = C ∩ D. Then we have
P(A ∩ (C ∩ D)) = P(C ∩ D)P(A|(C ∩ D)), but P(C ∩ D) = P(D)P(C |D), so we have

P(A ∩ C ∩ D) = P(D)P(C |D)P(A|C ∩ D)

that can be generalized as follows,
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Assume I throw randomly a ball into a box, but you cannot see it:

(it’s there)...
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Now I tell you, I throw randomly another ball, but you cannot see it either.

However, I tell you (I can see them), this second ball is to the right of the initial ball.
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Again, I tell you, I throw randomly another ball, and tell you that it is to the right of
the initial ball..
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Again, I tell you, I throw randomly another ball, and tell you that it is to the right of
the initial ball..
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If this happens many times, with the updated information, you will believe that the ball
is to left with more and more confidence.

This is Bayesian updating, with the new data, you update your beliefs about
something, and actually this was similar to Bayes experiment to reach this conclusion.
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So the question is:
1. Where is the ball?
2. Where is the ball given the 1 ball randomly fell to its right?
3. Where is the ball given that 2 balls randomly (and indep) fell to its right?
4. Where is the ball given that 3 balls randomly (and indep) fell to its right?
5. ...

P. Fagandini



Baye’s rule:

P(A|B) =
P(B|A)P(A)

P(B)

E x a m p l e

Assume a car shows the warning signal (Event B) which indicates that it might have a
problem (Event A). P(A|B) is the probability that the car has a problem given that
the light turned on. P(B|A) displays the probability that the car turns the light on
when there is a problem, P(A) is the unconditional probability that the car has a
problem and P(B) is the unconditional probability that the warning light turns on.
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R a n d o m V a r i a b l e s

D e fi n i t i o n

A random variable is a measurable function X : Ω → X, where X is a measurable
space, such that for S ⊆ X

Pr(X ∈ S) = P({ω ∈ Ω|X(ω) ∈ S})

So the probability that X belongs to S is the measure of the set of outcomes that
make X to have some particular characteristic (that makes it belong to S).
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S could be Rn, true/false, N, a color, a disease, etc.

D e fi n i t i o n

Let X : Ω → X be a r.v. X is said to be discrete if X is finite or countable infinite,
and continuous if X is uncountable.

The true question is, how likely is that X belongs to S? (how likely is that x = 2,
x = true, x = yellow , etc.?)
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D e fi n i t i o n

Let X : Ω → X be a r.v. The function fX : X → R is the density of X if it holds that:

for any x ∈ X, fX (x) = P({ω|X(ω) = x}) when X is a discrete r.v., and

for any E ⊆ X,
∫

E fX (x)dx = P({ω|X(ω) ∈ E}) when X is a continuous r.v.

Note that it also must hold that
∫
X f (x)dx = 1.
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D e fi n i t i o n

Let the continuous r.v. X : Ω → X, where X ⊆ R. The cumulative function is:

F (x) = Pr(X ≤ x) =
∫
X∩(−∞,x ]

fX (z)dz
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D e fi n i t i o n

The expected value of a continuous r.v. X : Ω → X is defined as:

E [X ] =

∫
X

xfX (x)dx

Note:
1. This is often found as E [x ] = µX .
2. If g(x) is a function, then E [g(x)] =

∫
X g(x)f (x)dx is the expected value of the

function.
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D e fi n i t i o n

The variance of a continuous r.v. X : Ω → X is defined as:

var(X) = E [(X − E [x ])2] =
∫
X
(x − E [X ])2fX (x)dx

You can often find this as var(X) = σ2
X .
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D e fi n i t i o n

A continuous r.v. X : Ω → R is said to be Normal or Gaussian if its density is:

fX (x) =
e x p (− (x−µX )

2

2σ2
X

)√
2πσ2

X

D e fi n i t i o n

If X is Normal, and satisfies that µX = 0 and σ2 = 1 it is called Standard Normal.
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D e fi n i t i o n

The conditional density fX |B of a continuous r.v. X , given an event B, with
P(B) > 0 must satisfy that:

P(X ∈ A|B) =

∫
A

fX |B(x)dx

Note: To find, for example, the conditional expectation, you should compute the
expectation as usual but using this density instead.
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D e fi n i t i o n

Let X : Ω → X and Y : Ω → Y be two jointly continuous r.v. The joint density
fXY : X× Y → R is a function such that:∫

E

∫
I
fX ,Y (x , y)dxdy = Pr({ω ∈ Ω|X(ω) ∈ E ,Y (ω) ∈ I})

for any E ⊆ X, I ⊆ Y.

Note: If g(x , y) is a function, then

E [g(x , y)] =
∫

E

∫
I
g(x , y)fX ,Y (x , y)dxdy
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D e fi n i t i o n

Let the continuous r.v. X and Y have a joint density fX ,Y : X× Y → R. The
marginal density is the function fX (x) : X → R such that

fX (x) =
∫
Y

fXY (x , y)dy

What this is trying to do, is to isolate the effect of x .
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D e fi n i t i o n

The conditional density of X , given Y = y , is a function fX |Y (x , y) such that
fX |Y (x , y) = P({ω ∈ Ω|X(ω) = x}|{ω ∈ Ω|Y (ω) = y}) or,

fX |Y (x , y) =
fX ,Y (x , y)

fY (y)

Again, if you want to find conditional expectation you should use this density function.
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D e fi n i t i o n

Two continuous r.v. X and Y are independent if their joint density is:

fX ,Y (x , y) = fX (x)fY (y), ∀x , y

Note that as a consequence of independence, for all x , y

fX ,Y (x |y) = fX (x) fY (y) > 0

fX ,Y (y |x) = fY (y) fX (x) > 0

And, also for two functions g and h

E [g(x)h(Y )] = E [g(X)]E [h(Y )]

Finally var(X + Y ) = var(X) + var(Y ).
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D e fi n i t i o n

The covariance of two r.v., denoted as cov(X ,Y ), is defined by:

cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

If cov(X ,Y ) = 0, X and Y are said to be uncorrelated.

D e fi n i t i o n

The correlation coefficient ρ of two r.v. X and Y that have strictly positive
variances is defined as:

ρ =
cov(X ,Y )√

var(X)var(Y )
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